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ABSTRACT 

The sntisf:tctory nllmcric:Ll solution of the  equations of f l ~ d  clynmnics  :Lpplicablc to  atmospheric  and  oceanic 
problcms  cl1:~r:~ctcristically  requires a high degrcc of computa t iod  stability and :tccuratc cot~scrvation of certain 
statistical  moments.  Mcthods for satisfying  these  rcquirements arc clcscribccl for wwious systcms of cquations 
typical of low Mach  number fluid dynamics  systcms, and arc illvestigatcd  in  dctnil as applied to  the two-dimensional, 
incrtid-plnnc  equation for  conservation of vorticity in a frictionlcss  Iron-divcrgcnt  fluid. 

The conscr\~ation  and  stability  properties of the  spatial cliffercncing nlcthods  devised  by A. Arak:~wa arc in- 
vcstig:ttcd by  means of spectral  analysis of the  stream  function  into  finitc  Fouricr modes. Any of two c1:tsses  of 
lincnr and quadratic  conserving  schemes arc shown to eliminate the non-lincar  instability discussed by Phillips, 
although  the  “diasittg” error remains.  Stability  relatcd  to  thc  time  dcrivativc  term is invcstigatcd  through  analytic 
and numcrical  solutions of n limited-componel~t  system of finite  spectral  equntions,  equivalent to one of the  quadratic 
conserving  diffcrencc  schcmcs, and a number of first a11d sccond order rcprcsct1t:ttions of the  time  derivative  term arc 
tcstccl scpttr:ttcly. Thc commonly uscd midpoint  rule (“lcapfrog”) mcthod is shown to bc unstable  in  some cases. 
Of the  stable methocls, that  devised by Miyakoda  and  the sccond order  Adams-Bmhforth  mcthod  cshibit  satisfactory 
:1ccur:Lcy, whilc those  due  to  h4atsuno,  aud Lax and Wendroff arc mrlch lcss accurate. 

A systctnkLtic  clerivatiotl of the  Arakawa difference  schcnlcs is contaitlcd in an appcndis, which shows their  unique 
satisfaction of ccrtnin  prcscribed  accurncy and conservation  propertics. 

1 .  INTRODUCTION of the  statisticd  parameters of a number of sequential, 

I n  the  last 10 years  numerical  methods  have  been  used 
with increasing  frequency and success for  solving  non- 
linear  initial-value  boundary-value  problems in fluid 
dynamics. The availability of high-speed electronic  com- 
puters  hns probtLbly been  the major factor  in  the success 
attained, since many of the problems had  been  properly 
posed for many years. Much of the  numerical  analysis 
necessary to satisfactorily  formulate  these  problems  for 
computatioual  solutions also dates  back  to pre-electronic 
eras. Tn recent  years,  however, it has become  clear that 
methods of numerical  formulation  must, to some extent, 
be tailored  to the  nature of the expected solut,ion. Thus in 
spite of the  almost  universal  application of the Navier- 
Stokes  equations,  numericnl  solutions  involving  shock 
waves  should  evidently  be  obtained  in a rather different 
manner fronl those pertaining  to, for example, unsteady 
thermal convection. The finite difference methods devel- 
oped at  the  Courant  Institute  (Courant,  Isaacson,  and 
Rees [5]; Lax  and  Wendroff [13]; Richtmyer [21]) may be 
quite  appropriate  for high i\/Iach number problems  involv- 
ing a single energetic “event”.  They  often  are severely 
inadequate, however, when npplied to an atnlospheric 
general  circulntion  problem,  in  which accurate  calculation 

and  somewhnt  random,  events is the  primary  requirement. 
In  general,  atmospheric  and  oceanographic  equations  are 
highly  non-linear, and useful computation  often  requires 
that  momentum, energy,  circulation, heat,  and  other 
vnrit~bles  be  created,  transformed,  and  dissipated  through 
severnl  energetic cycles with a minimum of consistent, 
i.e. nowrandom,  computational  error.  Meteorologists 
can ordinarily  tolerttte  random  error  magnitudes up to 
the  error  limit of the  rather poorly known  initial con- 
ditions. Few  competent meterologists espect  to  be  able 
to  make  detailed  daily we:tther forecasts, by computer  or 
otherwise, six months  in acl\r:mce, but :L numericd  cd- 
culation in which 10 percent of the mass of the  atmosphere 
is lost  through  computational  error  during  this  period may 
be  highly  suspect in its  other  statistical conclusions. We 
thus  may  summnrize  the special  reqnirenlents of nmny 
geophysical fluid calculations t,o be  accurate  conservation 
of linear : x n d  quadrtttic  integral  properties  and  great 
conqmtationa.1 stability,  perhnps to the exclusion of opti- 
mum accuracy  in  shape and phase  representation.  Some- 
what  the  same  requirements  might  be  expected  to  prevail 
in some other low i\iIaclx nurnber  problems of the  more - 
classical type,  such ns the  Ii:mnan  vortex  street calcu- 
lations  recently  performed by Fromm and Harlow [9]. 
By contrast,  however,  operational  weather  forecasting 

*Present affilialion: National Ccntcr for Atmospheric Research, Boulder, Colo. models seem to  require  essentially the  opposite  properties. 
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I t  is well known that finite  representation of fluid 
motions by means of truncated  Fourier  spectra allows 
high accuracy,  stability,  and  conservation of all  appropriate 
quantities, but  at  great cost  in  computational  effort.  The 
number of multiplications  required to  compute non- 
1iuea.r interactions increases  as the  square of the number 
of components, a,s compared to  a 1inea.r increase in finite 
difference  formulations.  Spatial  differencing  formulas 
recently developed by Arakawa [l], and  Fromm [8] 
appear  to offer most of the  advantages of the spectral 
methods  within  a  grid  point  formulation.  These  for- 
mulas have  the  property of requiring  conservation of 
linear  and  quadratic  quantities within the advection 
terms  and  appear, to  a  certain  extent, t o  insure  compu- 
tationnl  stability.  Although  they  have  already been 
used successfully in several  different  problems  (Lilly [14], 
Bryan [23, Mintz  and  Arakawa 1171, Fsomm  and Harlow 
[g]), very  little is known of the general  properties of these 
methods.  This  study is an  attempt to  compare  different 
methods,  and assess  their stability in  a systematic way. 

I n  section 2,  linear  and  quadratic conserving spatial 
differencing  schemes are exhibited for two  systems of 
hydrodynamic  equations which typify  many  systems 
arising in nleteorological and oceanographic  problems. 
In section 3 the schemes appropriate for one of the  hydro- 
dynamic  systems,  consisting  simply of a  frictionless 
barotropic  vorticity  equation,  are examined and corn- 
pared in some detail  by  nleans of analysis into  finite 
Fourier  spectral  equations. It is shown that  the qund- 
ra.tic  conserving  schemes allow construction of one os 
more Liapunov  functions,  the  existence of which  assures 
stability for the  continuous  time  equations. Section 4 
contains examples of limited  component  sets,  similar to 
those  used by Phillips [19] and Lorenz [15], which  more 
simply  illustrate  the effect of application of the con- 
serving  schemes. 

Iri sections 5 and 6 methods of numerical  approxima- 
tion of the  time  derivative  are cornpaled through  analytic 
and numelicnl  solutions of one of the  limited  component 
Fourier  spectral  sets previously  derived. The known 
tendency  toward  instability of the  midpoint  rule, or 

Other  methods considered are mostly  stable but show 
widely varying  accuracy. 

A  systematic  derivation of the  Arakawa  spatial differ- 
ence  scheme  and related  linear-quadratic conserving 
schemes  for the bnrotropic  vorticity  equation  is  presented 
in t.he sppendis. 

< (  leapfrog," method is illustrated  and  partially explained. 

2. SPATIAL DIFFERENCE SCHEMES 

Perhnps  the simplest flow of general interest in meteor... 
ology  and  oceanography is that of a frictionless  incornpres- 
sible  homogeneous  fluid,  constrained to two-dimensional 
motion  between fixed parallel  upper  and  lower  boundaries. 
The equations of motion  reduce to an equation for con- 
serqation of the  vorticity  component perpendicular to  the 

boundaries, that  is 

where 9 is  the  streamfunction, j-=b2+/bx2+b2$/by2, and 
J symbolizes the two-dimensional  Jacobian. From  this 
equation it is  easily shown that kinetic  energy, (V#)2/2, 
a ~ l c l  any  function of 1 are conserved in  the flow; that is, 
that their  integrals  over a b e d  region in  space  can  only 
change by  transport  through  the  boundaries of the region. 

It is unlirely  that  any  finite  representation of the 
Jacobian can  conform to all these  integral  conditions,  but 
Arakawa [I] has developed a class of second-order  finite 
difference  schemes  which  conserve the  vorticity  and  one 
or both of t,he quadratic  quantities, kinet,ic  energy and 
squared  vorticity.  The schemes are  conveniently  de- 
scribed by use of three  fundamental formulas for the 
Jacobian, J1, J,, and J3, as follows: 

The notation, used in a previous  paper  (Lilly [14]), is 
defined by  the following  identities: 

where F(x) is any  function of the  discrete  variable x 
and Ax is the  grid  interval.  These  formulas  are  derived 
in  the  appendix  and i t  is shown  there that J ,  conserves 
vorticity, J, conserves vorticity  and its square, J3 con- 
serves  vorticity  and  kinetic  energy,  and  the  combination 
J A =  (J1+J2+J3)/3 conserves all  three. It is shown  in  the 
appendix that JA is unique in its  properties  within a certain 
class of approximations, but  that J1, J2, and J3 are  not, 
since  any  linear  combination of JA with  either of the  others 
retains  the  ltitter's  properties. 

The scheme  designated J1 is often  called the "usual" 
difference  scheme  and was  used in early  numerical  weather 
forecasting (Charney,  Fjeirtoft,  and Von Neumann [3]). 
Phillips [19] showed that  the scheme is uncmditionally 
unstable  to  disturbances  in  certain  high  frequency  modes. 
J3 was used by  Bryan [2]  in ocean current  calculations  and 
by Lilly 1141 and Deardorff [SI in convective  problems. 
Fromm [SI developed J3 and (J1+J3)/2 independently for 
use in  computational  simulation of flow past a cylinder. 
h4intx and Artlkawa [17] used JA in  generd circulation 
calculations. I n  these  applications  the  use of the  quad- 
ratic conserving  forms reportedly  eliminated  or  greatly 
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reduced  all  tendencies  toward  computational  instability. 
In  some  cases,  however, the difference method used  for 
approximating  the time derivative  apparently led to  a slow 
instability of the inviscid  equations. 

If the upper boundary  constraint in the previously  dis- 
cussed flow is replaced by a  vanishing  stress  condition,  the 
two-dimensional  equations may be written  in  a  form which 
is typical of many  other geophysical  fluid  dynamics  sys- 
tems,  including that of recent  general  circulation  calcula- 
tions by  Smagorinsky [23]. If h is the  height of the  free 
surface,  then  the  frictionless  two-dimensional  equations of 
fluid  momentum  and  continuity  are: 

bh b b -+- (hu) +- (hv) bt bx bY 

The mass  per unit  area,ph,  and  total  energy per unit  area, 
p(hu2+hvZ+gh2)/2, a,re  conserved in  this  set  (density, P,  
is a  constant), as are  the  momentum  components  except 
for boundary  pressure  forces. 

A  system of finite  difference  equations  which  preserves 
the  above  conservative  properties  is  the  following: 

b -  
d t  
-- (h”u) +&(h’zu2?) +S,(%z&u) +g~zSzh=O (2.7) 

b ” 2  

bt - (zo)+6,(h u v ) + C Y ~ ( ~ ~ ~ ~ ) + ~ ~ ~ G ~ ~ = O  (2.8) 

(2.9) 

Verification of the energy  conservation  property  can be 
readily  obtained by methods  outlined  in  a  previous  paper 
(Lilly [14]) .  Upon taking  the  finite difference  curl of 
(2.7) and (2.8) in  the case of h constant,  the  advective 
terms become identical to  J3 in (2.2). Since the  square 
of the  potsentid  vorticity per unit  area, p{’/h, is also 
conserved in (2.4)-(2.6), finite  difference  forms  similarly 
related t o  Jz  and JA  should also exist  for this  system, 
but  the possibility  has not been explored. It may be 
noted  that h, u, and v in (2.7)-(2.9) are  defined at  dif- 
ferent  locations  in  the  mesh.  This is not necessary  for 
the  conservation  properties,  since  a closely related 
system can  be  devised in which  all  variables  are  located 
at  the same  points.  The  above  system minimizes trunca- 
tion  error  in  the  terms  which  contribute to  linear  gravita- 
tional  oscillations. 

In  most  practical or theoretical  initial  value  problems 
to which  numerical  methods  are  applied,  the  equations, 
variables, or coordinates  exhibit  greater  complexities 
than  are  presented in (2.1) or (2.7)-(2.9). In  most 
cases it appears that  the difference  equations  can be 
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altered  and/or  added to  in  a  fairly  mechanical  manner 
to  preserve the desired integral  properties,  as  with  the 
examples  given by Arakawa,  Bryan,  and Lilly. Most 
numerical  forecasting  models,  including  primitive  equa- 
tions  models in which  a  condition of two- or three- 
dimensional  non-divergence  exists,  can be  treated  with 
schemes  closely related to  those  described  for (2.1). 
The compressible  Navier-Stokes  equations  and  the  equa- 
tions of large-scale  motion  allowing  external gravity 
waves are of the  form of (2.4)-(2.6). Conservative 
equations of a  scalar,  say T, can  be  written  using  either 
the  form of ( J1+J3) /2 ,  for incompressible flow, or the 
following equivalent  form  appropriate to  compressible 
flow: 

- (hT)+fiz(il”uTz)+6,(h vT )=O.  b ”y -u 

bt (2.10) 

These  forms  conserve T2 or hT2, respectively,  within  the 
advection  terms. 

3. SPECTRAL ANALYSIS 
The equations of motion  in  finite  Fourier  spectral 

forms have been  used both  in  diagnostic  studies  and  in 
simplified  geophysical  models. In  this  section we derive 
and  investigate  the non-linear  terms in  spectral  form 
for the finite  difference Jacobian expressions J1, J2,  J3, and 
JA above. The investigation  shows that  the  truncation 
errors  involved  in  the  finite  difference  spectra  are of three 
different types, only  two of which are  removable  by  in- 
creasing the  order of the difference  equations. The  third 
type of error,  commonly  known  as  aliasing, is responsible 
for  a  form of instability  demonstrated  by Phillips [19]. 

Although  Phillips  called it a  nonlinear  instability,  Miya- 
koda [18] (p. 175) showed that it can  occur  also in  linear 
equations  with  nonconstant  coefficients. The unstable 
behavior of this  error is eliminated  in  the  Arakawa dif- 
ferencing  schemes, by  compensating  triad  interactions, as 
in  the  analytic  spectral  equations. We may express the 
stream  function,  vorticity,  etc., as a series of complex ex- 
ponential  functions  with  vector  wave  number M=im+jn, 
as follows: 

where R=iz+jy,  im= J-1 and  the  summation is over a 
finite set of wave numbers. 

Approximately following Lorenz [15],  we write for the 
vorticity 

and  obtain  the  analytic  Jacobian  in  the  vector  product 
form . 

J(#, {)= (k. M’XM”)IM”12PM,+,,, (3.3) 
M’. M“ 

or, in  a  symmetric form 
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Considering now the  finite difference equations, we must 
introduce  certain  substitutions for the  wave  numbers  ap- 
pearing  in  the  derivative expressions. We  expand  the 
notation defined in (2.3) to  include  the  finite  gr  a  d’  lent 
and  Laplacian  operators 

and  note  tha.t  after  operation on a complex  exponent, 
sines of the  wave  numbers  appear,  e.g., 

- 
veim (M . R) S (M) imeim (M * R) (3.6) 

where 
i sin mA+j sin nA 

A S(M)= (3.7) 

and I 
n7’eim(M.R)=-41S(M/2)12eim(M.R). 

Although i t  is not  essential  to  the  analysis, we have as- 
s u e d  that  the grid  is  isotropic, so t.hat A=Ax=Ay. The 
vector S(M) approaches M for  small  wave  numbers,  but 
it obi~iously does not possess distributive  properties,  i.e., 

S (MI + Mz) # S (MI) + S (Mz), 

We now mny  write  the  finite difference Jacobian ex- 
pressions J1,  J2, and J3 in  spectral  form as follows: 

J1=k*V+XTt=Z  k * [S(M’)XS(M”)]  
M‘, M“ 

i (3.10) 

Pinajly,  after  summing  the  above  three expressions we 
may  write  the  averaged  form, JA, as 

J,=(Jl+ Jz+J3)/3=3 k .  { S(M’)  XS(M”) 
2 

M’. M” 
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The conservation  properties  are  demonstrable  upon 
consideration of the  triad  interactiolls  obtained in forming 
the  energy  and  squared  vorticity  equations.  Thus in 
the  product $.-M”Mt, JA the complex  exponential  re- 
duces  to unity  and  the  product  has  a  nonvanishing 
spatial  int,egral  proportional  to  the  amplitude  product, 
A - M , - M , t   A M , A M , ,  multiplied  by  the  interaction 
coefficient of (3.11). Upon cyclically transposing M’, 
M”, and -M’-M” the  three  interaction coefficients 
obtained  sum to zero, proving  kinetic  energy  Conservation 
within  the  triad.  A  similar  result is obtained for the 
products which lead to  conservation of squared  vorticity. 
J2 and J3 may  respectively  be shown  to  conserve squared 
vorticity a,nd kinetic  energy  alone.  The  spectral  equa- 
tions  do  not in themselves  determine  whether  the  non- 
conserved  properties  grow  or  diminish, as that depends 
on  phase  and  amplitude  conditions for a  given case. 

In  comparing the finite expressions (3.S)-(3.11) with 
the  analytic  Jacobian (3.3) or (3.4) one may segregate 
the differences, or  truncation  errors,  into  three  different 
classes, here  designated  as  first  derivative  errors,  second 
derivative  errors,  and  aliasing  errors.  First  derivative 
errors  are  introduced  by  the  approximation of M by S(M) , 
that is the  replacement of wave  numbers  by  their sines. 
These  errors  are  quantitatively  present in all interactions, 
and  introduce a qualitative effect when  two wave  numbers, 
M’ and M” are  parallel.  Equation (3.3) sl1ows that, 
for the  analytic  equations,  the  interaction coefficient 
disappears  and no  new  component  is  generated, but  this 
is not  true for (3.S)-(3.11). These  errors may  be  reduced 
by using a  higher  order difference scheme,  for  which 
S(M) is replaced by  the  Fourier  sine series converging 
toward M in  the  range  frcm - a /A  to r / A  in each  coordi- 
nate direction. Outside this  range  the series becomes 
periodic, but  the resulting  error  should  be classified as 
aliasing. 

Second derivative  errors occur in  the  approxim  a  t’ 1on 
to  the  factor M .  M by 41S(M/2)[2, associated  with  the 
computation of vorticity  from  the  stream  function. 
As with  the  first  derivative  errors  they occur to some 
extent  in  all  interactions  and also cause qualitative  errors 
in  certain cases. Equation (3.4) shows that no  inter- 
action  should exist for wave  numbers of equal  magnitude, 
that is with IM’/=lM”j. Again  this property is not 
accurately  represented in the  finite  approximations,  as 
can  be  shown, for example, by choosing  two components 
with  wave  numbers m1A=3n/5,  n1A=4a/5 and m“A=a, 
and nr‘A=O. By use of a  5-point  Laplacian  we  obtain 
a  value of ]S(M’/2)12-lS(M”/2)12=0.559/A2. Again 
these  errors  can  be  reduced by expanding  the  network 
of points  to  compute  the  Laplacian. 

The aliasing error is not explicitly a,ppurent  in  the 
spectral  equations,  but arises instead  from  the  wave num- 
ber  limits  representable  in  a  finite  mesh of grid  points. 
The highest  wave  number  unambiguously  representable 
in the x-direction is m=a/A, while higher  values  thnn  this 
are  misinterpreted  as -a/A+m. Thus the  interactions 
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symbolically  represented  in  equations (2.8)-(2.11) include 
not only  those corresponding essentially to those of the 
apalytic  formulation but also a  complete set of spurious 
interactions  involving reflections of one or both compon- 
ents. Since these  interactions  can  involve low as well as 
high  wave  number  components they could conceivably 
cause serious distortion of the solution  for cases in which 
energy is dispersed throughout the resolvable  modes. 
Later, however, we see that their  magnitude is typically 
about  equal  to  that of the  derivative errors. Since the 
spurious  interactions occur in  triads  they  do  not  alter  the 
quadratic conservation  properties of J1, J2, and J3. 

The conservation of spatially  integrated  kinetic  energy 
and  squared  vorticity in. (2.1) is equivalent  to  constancy 
of the corresponding sums of quadratic  amplitude com- 
ponents, i.e. 

JJ+V2+dzdycc M IM I2AMA-M=constant 

JJ(V2$)2dxdycc M IM 14A~A-~=constant .  (3.12) 

The-corresponding properties of the finite  Jacobian lend 
t'o olie or  both of the similar  finite difference requirements: 

$V2+X4 s - AMA-M=cOnStant 
X , ! /  M I ( V  
5, Y M ~ ( Y  (V2+)*~16 S - AMA-M=constant. (3.13) 

The existence of these  constant  quadratic  sums clearly 
puts  bounds  on  the  magnitude of the  stream function 
and all of its finite  derivatives  either  in  grid  or finite- 
dimensional phase  space.  Somewhat  more specific state- 
ments can  be  made  upon  recognition that,  either of the 
conditions of either (3.12) or (3.13) is sufficient to define 
a Liapunov  function, whose existence ensures Liapunov 
stability  about  the phase-space origin of the corresponding 
differential equations. A positive  definite  function V ( z i )  
of phase  space  components x i  about an arbitrary origin 
is defined (see, e.g. LaSalle and Lefschetz [12]) to  be a 
Liapunov  function if: 

(a) V(xi) is continuous  together  with its first  partial 
derivatives in  a  certain open region 2 about 
the origin. 

(b) V(0) = 0. 
(c) Outsside the origin  (and  always in SI) V h )  is 

positive. 
(d) d V / d t I O  in Q. 

The energy and  squared  vorticity  functions of the ampli- 
tude components A M  are  positive  definite since A" is the 
complex conjugate of  AM (beca.use $ is real) and all the 
other  conditions  are  obviously satisfied including the 
equality of (d). 

4. L I M I T E D   C O M P O N E N T  SYSTEMS 
111 several  previous  investigations of the behavior and 

stability  properties of meteorological equations it  has 
r-- (aa-<5S4-Ge7-2 

been useful to consider systems of equations of a few 
interacting  phase  components.  Although  all  the im- 
portant  qualitative  and  quantitative  properties of the 
Arakawa difference .schemes seem to  be  obtainable  from 
the general  Fourier  expansions, it is nevertheless  interest- 
ing to construct  limited  component  systems  for com- 
parison with previously  investigated examples. 

Phillips [19] discovered a two-component  (three co- 
efficient) system whose interactions  in J1 are  entirely 
self contained, that is, no new components are  created. 
All the  interactions involve aliasing and  are therefore 
spurious, and  the  system would be  steady  state  in  an 
analytic but  truncated phase  space  formulation.  Phillips 
showed that these  spurious  interactions  lead to uncon- 
ditional  computational  instability. The components are 
the following: 

sin "+Ucosai T i  
2 

Applying J ,  to  this  system one obtains  the following 
coef€icien t  equations: 

g= u,us dt 

!iLuluc 
d t  

where 

sin - s ~ n  - sin2 --sin2 - 
a . 27r 7r 7r 

2 3  2 
Ul= 4=*. 

2A2 sin* -+sin2 - 7r ?T 10A2 
4 3 

The solutions of (4.2) have exponentially growing parts 
for any non-zero U and  are  therefore  unstable. If first 
and second derivative  errors were eliminated (4.2) would 
be  unchanged  in  form but  with u1 increased by a factor 
of about 5. 

Upon substitution of (4.1) into J2 the corresponding 
coefficient equations  became: 

g=u,ux a t  

" s-u2Uc d t  

where 

and 
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The,solutions of (4.3) are periodic in most  cases,  and may 
be  expressed in  terms of Jacobian  elliptic  functions. 
Asymptotic  solutions  exist  for IC1 = 181, while  for ICI, 
ISl<<lUl the elliptic  functions  approach  sinusoidal be- 
havior. A similar  behavior  occurs in  the energy  conserv- 
ing system J3, with coefficients ( T ~ = & / ~ A ~ ,  k3=5/7. 
When  the  components  are  substituted  in JA, however, 
all  interactions  vanish  and we obtain  the  trivial  equations 
dC/dt=dS/dt=dU/dt=O. In  these  cases  also the first 
and second derivative  errors  introduce only quantitative 
effects  (no effect in JA). 

It, is  evident that, a.lthough  aliasing  errors  remain, the 
type of instability  demonstrated  by Phillips  is  removed 
by  any of the  quadratic conserving  schemes. The 
removal  in J2 and J3 is  effected by  introduction of a  third 
spurious  interaction which  combines with  the  other two 
to  form  a  triad. In  J, the form of the  interaction  matrix 
seems to forbid  existence of any self-contained two- 
component  sets  with  non-vanishing  interactions.  None, 
at  any  rate,  has been found.  Four-component  sets  exist 
in  abundance.  Although  their  behavior is slightly  more 
complicated, it is of interest  to examine  one  such set 
closely related  to Lorenz'  "maximum  simplification" 
equations. The  motive for this  is  to see how the  three 
types of truncation errors,  and  especially the aliasing 
error,  affect  a set in which  real  and  spurious  (aliasing) 
interactions  are  both  present. 

Lorenz [15] performed time  integrations  on  a  three- 
component  set of Fourier  components  which  he  called  the 
"maximum  simplification" set. If we add  one  additional 
component  to  this  set,  and specify the  wave  numbers, it 
can  be directly  compared  to  a  corresponding  self-contained 
finite  difference set.  The  components used are: 

The '  analytic Jac0bia.n  leads to  component  equations  as 
follows: 

d B  2 "_ 
I 
I d t  -3A2 [i 

dC-72 [-E AB+!? (L) a] 
I d t  -3A2 25 25 2 

I 
I d t  -3A2 

- "(') 13 5 A C ]  (4.5) 

while JA leads  to  the similar  relations 
I 

dA=d? [-a BC"I (') CD] 
d t  2A2 3 2  

The common  factors  to  the  left of the  brackets  in (4.5) 
and (4.6) are affected by first  derivative errors  in the 
latter, while the  digital  fractions inside  parentheses  are 
affected by aliasing  errors. All other  terms  are affected 
by second  derivative  errors  except  for  the  first  inside the 
bracket  in  the dAlclt and dB/& equations. By comparison 
of the corresponding  error  magnitudes we see that first 
derivative errors are,  in  general,  largest,  and the second 
derivative  and aliasing  errors  somewhat  smaller. Thus it 
appears  that some  improvement of accuracy  could  be 
secured by using  a  third-order  expression  for the first 
spatial  derivatives  as  is now done  in  routine  numerical 
forecasting  (Shuman and  Vanderman [22]). Further  re- 
finements would be ineffective  because of the remaining 
aliasing  errors. 

5. ANALYTIC  SOLUTIONS  TO A FOUR-COMPONENT 
SYSTEM 

Although the essential  elements of non-linear instability 
are  apparently removed by use of a  quadratic-conserving 
spatial differencing  scheme, there  remains the question of 
stability  related  to  time differencing. The usual  centered 
explicit  mid-point  rule  is  easily  shown  to  be  stable  to 
linear  perturbations, if the  time  step  is sufficiently  small. 
Experience  indicates,  nevertheless, that non-linear solu- 
tions  tend  to become  decoupled at  adjacent  time  steps  and 
eventually lose all coherence andlor become catastrophi- 
cally unstable. Since the  truncated  wave  space  systems of 
(4.3) or (4.6) are  exactly  equivalent to  spatial difference 
equations  applied to  a  particular form of initial  condition, 
an  investigation of stability  properties of these  systems 
should be  pertinent to  the  more  general  problem. In 
the following development we obtain  analytic  solutions  to 
the four-component  system of (4.6). Similar  solutions 
can be  found  to (4.5) and  to  the  two-component  systems. 

The kinetic  energy  and  squared  vorticity  conservation 
relations  may be  obtained  from (4.6) in  the form 

A2+- B2+- C2+- D2=E2=constant 3 5 7  
2 4 2  (5.1) 

A'+! B2+25 C 2 + e  D2=Z2=constant. (5.2) 4 8 4 

Upon introduction of A2JE and E as  scale quantities we 
obtain from (4.6) the dimensionless  equations : 

(5.3a) 
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db 
G- - ac 

dc- ab+- ad 2 
as 5 3 
"" 

(5.3b) 

(5.3c) 

dd - 1 a- 7 ac 
" (5.3d) It can be shown that  the mtLgnitudes of f and q are less 

than (P+Q)/2 and therefore that k is  real. If the  quantity 
inside the  square  root  in  the expressions for f and q is 

where Ea=A, Eb-B, Ec=C, Ed=D, - - 6=t. The negative,  solutions may  be  written similarly but  with Q 4 A2 
J3 E replaced  everywhere by -Q. Special  solutions  arise  in 

scaled conservation  relations now become : the following cases: * 

a2+- b2+- c2+--d2=1 3 5 7  
2 4 2  

2 2  

4 s  4 E2 

The first of these  special  solutions  is  always  sinusoidal, 
(5.4b) the  second  and  third  constant,  and  the  last is nlmays ex- 

ponentially  damping. The solution  for  the last case, one 
T~ solve  equations (5.3) we first note  that (5.3b and  d) of particular  intercst  here, is obtained by  direct  integra- 
imply a linear  relationship  between b and d, i.e., tion of (5 .8 )  and is. 

.z+!! b2+?.? C2+?!! d2,22=-. 

where bo is a constant,.  Upon  substitution of (5.5) into 
(5.4) and  after  some  further  algebra  we  obtain  the (al= d$ sech f@ P8)=% \ G I  (5.11) 
relations  where 

(5 .6~~)  P=1/7/11 
thus 

where 
p2,"- 7 7  11 

4 10 200 z2+-  bg 

2"_+_ 14 14 22". 15 - 7 bi, 
- 13 13 26  26 

We now introduce (5.6) into (5.3b) to  obtain a single 
integrable  equation : 

(5.S) 

Certain  substitutions described in Whittaker  and  Watson 
[25 ]  (chap. XXII) , allow reduction of (5.8) into a standard 
elliptic  integral  form with  the  solution  for  most cases 
given in  the  standard  Jacobian elliptic  function notation 
by : 

It is easily shown that  the  asymptotic solutions  lie  along 
four  lines in  the a,  b, c phase  volume (d is not  independent, 
because of (5.4 a)).  They  thus  constitute a set of nleasure 
zero and  have no probability of arising from  initially 
random choices of a, b, and G. 

As indicated  previously,  solutions to (4.5), arising  from 
analytic  spatial  derivatives, are similar in  form  to  the 
above but with different  numerical coefficients. Again 
all we periodic with  the exception of a single asymptotic 
case. Somewhat  simpler but closely related periodic and 
asymptotic solutions also exist  for  two-component  systems 
like  (4.3). The following investigations of the  behavior of 
solutions of the finite  time difference equations  analogous 
to  the  four  component  system  obtained  from JA thus will 
also be  pertinent  to  the two-component  systems  like 
(4.3) obtained by use of J2 and J3. 

6. FINITE  TIME-DIFFERENCE  SOLUTIONS 

37bo b- 6"- 
As shown in section 3 ,  Fourier  analysis of the original 

37bo 520 =-J- P+&+2E dn(cp, IC) 
partial  differentid  equation (2.1), with  the  spatial 

(5.9) derivatives  replaced by one of the  quadratic-conserving 
520 finite difference expressions, converts it into a closed set 

of quadratic-conserving  ordinary  first-order  differential 

P+Q+2v b-7" 

where 
'Another special case, P=Q<glbol  is  not allowed because of limitationson  themagni- 

tude of real variables imposed by (5.4 a). 
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equrbtions. hfethods of numerical solution of such 
equations  are  rather well developed, in contrast  to  the 
case with  the original partial  differential  equations.  The 
fourth order Runge-Kutta  method, for esample, combines 
high accur~cy, stability,  and  relatively  straightforward 
machine  programming. I t  is not  entirely clear why  such 
methods ha\7e been  generally neglected in the  time 
differencing of the  partial diff erential  systems, but  perhaps 
the  best  reason is that  time differencing errors  have 
previously been  considered negligible compared  to  the 
serious stability  problems  associated  with non-linear 
spatially differenced terms.  With  the  introduction of the 
quadratic-conserving  schemes described above,  time 
differencing errors  take on a new importance.  Several 
calculations  performed  using these schemes,  including 
those by Deardorff,  Bryan,  and  Mintz  and  Arnkawa (:dl 
from  personal  communication),  exhibited  a slow instability 
apparently nssociated with  the  time  integration  method. 
An approach  to  understanding  this  instability is obtain- 
able from considerntion of a  limited  component  system. 
Much of the following analysis utilizes the terminology 
and  notation of Henrici [IO]. 

Consider the following system of ordinary differential 
equations for the  dependent  variables xi ,  functions of t:  

” 
axi 
dt -.fi(Z1, 5 2 ,  . . . t )  (6.1) 

where  solutions a,re sought  satisfying  the  initial  conditions 

xi(0) (6.2) 

Among  the  discrete  variable methocls for  the  solution of 
such n set we can  distinguish  between one-step and 
multi-step  methods. I n  a one-step  method  the  values 
of x i  a t  each  time  increment  can  be  found if only  the 
d u e s   a t  the  previous  increment  are  known. I n  a  multi- 
step  method  the  cdculation of a new  time  increment of xi 
requires  knowledge of more  than one of the  previous 
values.  Another  method of classificrbtion  of methods is 
by ‘their  order of accuracy. I n  a  method of j t h  order 
accuracy  the  Taylor series for the  finite difference equation 
is identicd  with (6.1) up  to  and  including  the  term 
multiplied by  the  jth power of the  time  increment. A 
third clnssification distinguishes explicit from  implicit 
methods. I n  the  latter  the  functionsf,  must  be  evaluated 
at  the new time  step,  generally by some iterative  method. 
Questions of computational  stability for a given method 
depend  considerably  on its position with  respect to each 
of these classifies A t‘ ions. 

Most meteorological and oceanographic calculations 
have been  performed  with explicit methods of first  or 
second  order  accuracy. Implicit  methods  can  be justified 
in  order  to allow lnrger  time  steps  in cases wherein a high 
signal velocity is  present  in  the differential equations  but 
is of no physical interest.  There seems to  be  little  point, 

.however, in pursuing a higher  order of time  accuracy  than 
is present in the  spatial  derivatives for advectively con- 

ditioned flow patterns.  Both single-step and  multi-step 
methods  are in common use. In this section we investi- 
gate  the  stability  and  accuracy of several of these  methods, 
listed in table 1, along  with  one method,  that of Adams 
and  Bashforth,  having  certain  advantages  apparently 
overlooked by  most  previous  investigators.  The  theo- 
retical  results  have  been verified or  illustrated  by  extended 
integrations of equations (5.3a-d) for some of the  meth- 
ods  listed. 

Perhaps  the  most commonly  used method  in  numerical 
forecasting  and  related  conlputations  is  the  mid-point 
rule, also known as the  “step-over”  (,Richardson [20], p. 
150) or “leapfrog” (Richtmyer 1211) method.  For  the 
initinl  step  Euler’s  method is commonly  used although 
more  sophisticated  methods  have  often  been  applied. 
We now  derive  some  results  relating  to  the  stability of 
this  method as applied to  equations (6.1) for a single 
variable x, with  a linenr complex  function f specified as 

f= (u +iv) x (6.3) 

where u and v nre real  constants.  The  analytic  solution 
of (6.1,), (6.2), and (6.3) is  exponential if v=O and  sinu- 
soidal if u=O.  For  the  latter  case, we can  write  the 
solution of difference equation (2) in table 1 as follows: 

x ( n )  -qlein”+(- l ) ’ lq2e-fn” - (6.4) 

where tan 8-vAt/[l- (04t)~jl” and  the  superscript ( n )  refers 
to  the  time level. The  amplitude coefficients ql and v2 
are  obtained  by use of Euler’s  method  for  the  initial  time 
step,  and  are 

~ 1 = ~ [ 1 + \ / 1 - ( ~ A t ) 2 ] ~ ,  772=3[1-\/1-(~41)*]77 (6.5) 

The  analytic  solution is given by 

Z = q p  (6.6) 

From comparison of (6.4) and  (6.6)  it is clew  that the 
second term of the  former  is  the  spurious  solution  intro- 
duced by  the difference approximation. It consists of :I. 

single-time-step oscillation modulated  by  the period of 
the  real  solution,  and starts  and  remains  with  sn~all 
amplitude, provided /uAtl<<l.  On  the  other  hand, if 
c=O and u<O the finite difference solution is 

x(n)  =qle-nb +( -1 )nq2enb ,  t a n h z Y = l u l A t / d m  

q1=[1+Jl+(~At)~]/2, q2=[l-\/l+(uAt)’]/2 (6.6) 

which  is to  be compared wit.h the  analytic  solution 

x = q t ? U L  (6.7) 

Here we see that  the  spurious oscillatory part of the 
solution,  again associated with q2, grows with  time ex- 
ponentially.  This form of computational  instability is 
often associated with diffusion terms.  Henrici  terms it 
weuk instability  and shows that  it is  essentially confined to 

I 
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TABLE 1.-Characteristics of methods of i n t e~ra t ing  jirst order  spectral  diflerential 

Method 

1 .  Eulcr ___.._______________-."" 

2. Mid-point rule ._________.....__ 

3. Euler's modified ___............ 

5. Matsuno ._______________.______ 

6 .  Miyakoda _.._____..____._.____ 

7. Adam-Bashforth _._...___.___. 

S. Las-Wendroff 

~ 

~ 

Steps 

" 

1 

2 

1 

1 

1 

3 

2 

2 

'uations 

Explicit 01 
Implicit 

E 

E 

I 

E 

E 

E 

E 

E 

19 

- 
Amplification.for 
perlodic solut~on 

a class of multi-step diff'erence nlethods which  allow more 
than one  solution to  the equation dx/dt=O. Neither  the 
single-step methods  nor  the  Adams-Bashforth  or Adams- 
Moulton (implicit)  multi-step  methods  exhibit this  form 
of instability. 

These  results  can be applied to non-linear  equ a t' ions 
like (5.3) when we recognize that  the elliptic integral 
functions,  although  generally  periodic,  partake of the 
nature of both sinusoidal and  exponential  forms, as can 
be  seen by examining the first and  last of the  limiting 
forms of (5.10). For  the  latter of these,  one may linearize 
the  finite difference equations  and find perturbation 
solutions  which are  unstable  for  integrations  made  by 
the  mid-point rule. It may  be expected,  therefore, that 
initial  conditions chosen to be close to  those of the limiting 
asymptotic case will lead to  instability of the weak 
time-splitting  type. To  test  this assumption,  numerical 
solutions of (5.3) were  obtained using the  Euler  method 
for  the first step  and  the  mid-point  rule for 999 subse- 
quent  time  increments,  or  until  instability  ensued.  The 
following three  sets of initial  conditions were  used: 
(1) az0.7664163,  b=0.14,  ~=0.5526707, d=-0.02 
(2) ~=0.7669696,   b=0.14 ,   ~=0.5530697,  d=O.O 
(3) n=0.5, b= l/& c= 1/45, d= 1/$14 
The first of these  corresponds to  the  asymptotic  solution 
and  the second  to a small  perturbation  from  it.  The 
third was chosen to  have energy  uniformly  dispersed 
among  all  components. 

Figures 1, 2, and 3 are  time  plots of these  solutions  for 
the  variables a, b, c ,  and d a t  odd and even  time  steps. 
The  time  interval is 0.2 non-dimensional unit. All 
the  solutions correspond very  accurately  to  their  analytic 
counterparts as long as the  time  splitting is small. The 
curves  for  case (1) and (2) are  almost  indistinguishable 
up  to  the  point  where  the  former becomes  unstable, 
but  the  latter  then becomes  periodic with a period  agreeing 
to  within  about 1 percent of the  analytic  prediction. 

Noticeable  splitting  occurs  periodically as  the  integration 
proceeds, and  after  about 800 time  steps  the  system  has 
reached a point of incipient  instability.  Figures 4 and 
5 show  the  kinetic  energy  for  odd  and  even  time  steps 
of cases (1) and (2), integrated  by  the  mid-point  rule, 
and case (I) integrated by  other schemes to  be described. 
Time-step  splitting  obviously  occurs  and amplifies con- 
siderably  before  the  average  noticeably  deviates  from 
unity. In case (3) the oscillations have become shorter 
and simpler, although  far from sinusoidal, and  are pre- 
dictable  to an accuracy of 0.5 percent. The  splitting 
here has an amplitude of about 1 percent,  too  small 
to  plot,  and is  completely  innocuous  to a t  least 1000 
time  steps.  The  kinetic energy (not  plotted)  is  essentially 
constant.  This  behavior would presumably  characterize 
solutions for the  majority of initial  conditons chosen 
a t  random  from  all possible values. 

Table 1 presents  some  pertinent  details on  the  remaining 
methods  investigated.  Most of the  methods, when 
applied to  integration of the  equetion ch/dt=ivx, yield 
complex exponential  solutions.  Column 6 shows the 
amplification factor associated with  the  real  part of this 
complex  exponent,  where p=vAt. 

Euler's  method  and  the  mid-point  rule hive already 
been discussed. J t  has long  been  known that Euler's 
method  leads  to slow amplification of oscillating solutions 
as well as significant phase  errors.  Euler's modified 
method,  the  best  known implicit method, is rather  ideal 
in  several  respects, as it is the only  one of those discussed 
here  in which the conservation  relations (5.4a, b) hold 
exactly. Veronis [24] has recently  used it for integration 
of spectral  component  equations. The  Heun  method, 
used by Lorenz [16] and  others, is a single-step method 
which may  be considered a first iterative  approximation 
to  Euler's modified method.  Table 1 shows that periodic 
solutions  amplify, but only by a fourth-order  term. 
Lorena has shown n similar  result  for  general systems of 
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FICUKE 1.-Case I ,  asymptotic  solution  for  the dimcnsionlcss 
amplitude coefficients a, b, c, and d,  integrated  from  cquat.ion 
(5.3) by  thc mid-point  rule  with  time  intcrval 0.2 dimcnsion- 
less units.  The  light  and  heavy  curves  connect  values  for 
odd  and  evcn  numbered  timc  steps,  rcspcctively,  aftcr  the 
initial single uncentered  stcp. 

conservation  equations.  Another  single-step  method  pro- 
posed by  Matsuno (unpublished)  and used by  Mintz 
and  Arakawa [17] is  essentially the first  approximation 
t.o a first-order  backward  difference  scheme. The nmplifi- 
cation  factor,  like that of Euler’s  method, differs from 
unity  in  a second-order term,  but  tends  to  damp all 
oscillations  except the  shortest.  Equations (5 .3)  were 
numerically integrated  by  this  method for the conditions 
of case (1) which led to instability  with  the  mid-point 
rule. The kinetic  energy,  plotted in figure 4, shows 
clearly the effect of this  damping. The step-like  appear- 
ance of this  cucve  is  associated  with the slowly oscillatory 
nature of the numerical  solution. This oscillation  is 
itself a  truncation  error effect,  since the  analytic solution 
is asymptotic. It occurs,  however, in all the numerical 
solutions  obtained, a,nd is clearly  related to  the singular 
nature of the  asymptotic case. 

Miyakoda  [lS]  (p. 133) suggested use of a three-step 
method which is  essentially redundant, since it is only 
of second-order  accuracy. The redundancy  is  applied 
to elimination of weak instability  and  is  most effective 
when the coefficient p is a t  or near  the  value giving 
optimal  damping of the two  spurious  computational 
modes. Truncation  error increases  with p, as does the 
amplification of the periodic  solution  shown in column 6 
of table 1. For p=O the  method reduces to  the mid- 
point  rule.  Numerical  integrations were performed for 

the  optimal  value of p snd for p-& the value  suggested 
by Miyakoda,  and  results  for  the  kinetic  energy  are 
plotted,  in an expanded  scale, on figure 5. There  is 
obviously some oscillation, in  phase  with an observed 
oscillation of the basic  solution  components, but  the 
overall  trend is virtually  undetectable  even  after 1000 
time  steps.  Essentially  similar  results  appear for the 
Adams-Bashforth  method, also presented on figure 5. 
A  slight  trend  toward  increasing  energy is detectable  here, 
as could be expected  from the  somewhat  larger amplifi- 
cation  factor  compared to  hlliyakoda’s  method. This 
method  is  somewhat  simpler than Miyakoda’s  and  more 
efficient than Heun’s. It has  not, t o  my knowledge, 
been  previously used in  nunlerical  forecasting. 

The scheme  proposed by Lax  and Wendroff [13] is of a 
slightly  different nature  than those  considered  above, 
as it was originally  designed for application  to  partial 
differential  equations. 

The principal  identifying  feature of the scheme  seems 
to be in the  time differencing,  however.  Elsewhere in 
this  issue Kasahara [I 11 and  Fischer [7] discuss the  stability 
of difference  schemes  closely related to  that of Lax  and 
Wendroff but differing  somewhat in  the  space-time  lattice 
structure.  Here we consider the Lax-Wendroff  scheme 
applied to  equation ( Z . l ) ,  but modified by use of the 
Arakawa  spatial  Jacobian J,. As shown by  Richtmyer 
[ Z l ]  the scheme may  be  written  as  a two-step process-as- 
follows 

{ ‘?&+I)={ (” )+$  VZ{(?&)- J ( n )  A . A t  

The five-point  Laplacian operator  appearing  in  the  first 
step arises  because of the  spatial  averaging employed by 
Lax and Wendroff, and seems to  be  an  essential  feature 
of the  system,  although  in  Kasahara’s schemes it appears 
to  have  a coefficient only  one-half as  large.  Upon appli- 
cation of the  Fourier  transform  to (6.8) the  system defined 
in column 4 of table 1 is obtained, where the kl’s are sines 
of wave  numbers.  Except  for the pseudo-viscous damp- 
ing  caused by  the  Laplacian  term  this scheme is similar 
in  nature  and  accuracy to the  Heun  method  and is known 
in  the  literature as the  “improved polygon” method 
(Henrici  [lo],  Collatz [4]). The presence of the  damping 
terms,  however,  causes  extremely  large  errors in  the  treat- 
ment of high  wave  number  components. 

The results of the  numerical  integration of (5.3) by  this 
modified Lax-Wendroff method  are,  therefore, essentially 
nonsense, as can be seen by viewing the energy curve  in 
figure 4. While this  may  not  be  an  entirely  fair  manner 
of evaluation, it does  show that high  wave  numbers are 
handled  with  effectively  no  accuracy by  this  method. 
One may of course  argue, from the previous  analysis of 
truncation  errors of equation (4.6), that  there is very 
little  accuracy  in  the  high  wave  number  results for any 
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FIGURE 2.-Case 2, perturbation  from  asymptotic  solution. See figure 1 caption  for  othcr  details. 

1 .o 
0.8 

I I I I I I I 

FIGURE 3,"Case 3, uniform  energy  dispersion. See figure 1 caption for  cther  details. 
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DIMENSIONLESS TIME,  UNITS OF AYE 
FIGURE 4.”Di1nensionless  normalized  energy as a function of time for various  initial  conditions  and  numerical  solution  methods. The 

separation  between  odd and even numbered  time  steps shom the  development of instability in the mid-point  rule  calculations. 

are of three  types,  only  two of which are  reducible by 
higher  order differencing. The  third  type,  the aliasing 
error, is present  in  all of the  Jacobian  forms considered 
but does not  lead  to  computational  instability  in  any of 
the quadratic-conserving  forms  because of the balancing 
of spurious  interactions  in  triads. Specific examples of 
truncated  spectral  systems were  considered to  illustrate 
this effect and  to  compare  the  behavior of the  various 
quadratic-conserving  formulations. 

The remaining  factor  leading to possible computational 
instability  in  a  simple  non-linear  vorticity  equation,  the 
time differencing, was investigated  by  comparison of 
analytic  and  numerical  solutions of a  four-component 
finite-difference spectral  equation  system.  From  theoret- 
ical consideration  and  integration of a  limited  number of 
cases i t  appeared  that  the  mid-point  rule  usually  applied 
in meteorological  calculations  is unstable  for  certain 
rat,her special set,s of initial  conditions.  Instability, when 
i t  occurs,  is of the  nature of an  amplifying single-time- 

step oscillation. Several  alternate  methods of stabilizing 
the  calculations were tested  analytically  or  experimentally. 
All eshibited  improved  stability,  and  three,  the  Heun, 
Miyakoda,  and  the simple and  rather efficient Adams- 
Bashfort,h  method  seemed  to  have  acceptable,  and  roughly 
equd, accuracy. 

In most  practical  or  theoretical  initial  value  problems 
to which  numerical  methods  are  applied,  the  equations, 
variables,  coordinates,  and  for  boundary  conditions  es- 
hibit  greater complexities than  are  in (2.1). Each  prob- 
lem must  be considered on  its own terms,  and it is not 
implied that  use of a  quadratic-conserving  Jacobian  plus 
stable second-order  accuracy time differencing will solve 
all stability  problems.  These  systems  can, however,  be 
generalized to cover  a  considerable  range of variation of 
the  systems of equations,  boundary  conditions,  and 
mapping  factors. As an example,  a 9-level general 
circulation  model now being  used by Smagorinsky  and 
Manabe of the  Weather  Bureau’s  General Fluid Dynamics 
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FIGURE 5.-Dimcnsionless normalized  energy,  plotted O I I  a more  open scale.  Values for  odd  and  evcn  time stcps are joined to show the 
contrast  bctween the mid-point  rule and the more stable  methods. 

Laboratory  has been recently  refornlulat-ed to  incorporate if x is  replaced by -x or y by - y. These  requirements of 
these  methods. rotational  symmetry  and reflective anti-symmetry  lead to  

the coefficient relations 

We now denote  by Jmn 
whose factors  are chosen 
the point x, y. 

a finite  sum of product  terms, 
from a %point, box surrounding 

where aijk2 is one of 81 components of a fourth  order  tensor. 
We  require  that aijkz  be specified to satisfy  certain  proper- 
t'ies of the  analytic  Jacobian, J(#, {). 

If the x and y axes are  rota,ted  by a multiple of ~ / 2  the 
analytic  Jacobian is  unchanged, while its sign is reversed 

755-584-654 
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I:n order that J,, be  a second  order  approximation to J we 
expand + and [ in  a  Taylor's series  around x=mA, y=nA, 
1.e. : 

Upon  substitution of (A6) and (A7) into (2.1) and  equating 
coefficients of the derivatives,  a  new  relation  is  obtained, 
which may  be defined as  the second  order  accuracy 
criterion : 

ai+az+a3+a4+2%+a6=o (AS) 

We now apply  the  linear  and  quadratic conservation 
requirements.  These  may  be  stated  as  the  reduction of 
area  integrals  to  line  integrals  around  a  boundary.  For 
conservation of vorticity,  kinetic energy,  a.nd  squared 
vorticity,  this  means  that  the  summations 

must include,  respectively,  no  contributions  from  the m., 
n point. 

Figure 6 is  a  schematic  diagram  intended  t'o  illustrate 
some of the  interaction coefficient properties. The axes  are 
in  the x and y directions  with the origin at  the point x=mA, 
y=nA. The solid  arrows  represent  interaction coefficients 
connecting  vorticity, [, at  the arrowhead  and  strea.m 
function, $, a t  the  tail, e.g., al=alool, ~ 3 = ~ 1 1 0 1 ,  etc.  The 
dashed  line  arrows  represent  the  same coefficients acting 
on  variables  displaced  one or two  grid intervals  in  the 
vertical  and/or  horizontal, but  they  are labeled  according 
to their  value  in  the  grid  centered at  m, n.. The  vorticity 
conservation  condition  requires that  the sum of the co- 
efficients associated with  parallel  equal  length  arrows 
running  in  the  same  direction  must  vanish.  For  most of 
those  appearing  in  figure 6 this is already  the case,  e.g., 
ul-al=O, a2-ua+a3--a3=0, in which it may  be  noted 
that all interactions involving the origin  were  made to 
vanish by  the  symmetry  conditions  in (A3) and (A4). 
The only new relation  arising  from  this  condition  srises 
from  equating  the two sets of long dia.gona1 interaction 
arrows,  i.e. 

In  order  to derive the  qudratic conservation  properties, 
we represent  triad  interactions  by  a  triangle,  with one 
vertex at  the center  and  the opposite  side  given by  the 
interaction coefficient arrow. Thus  the  kinetic energy 
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FIGURE 6.-Interaction  coefficient  diagram. The open  circles 
are  grid  points  from  which  stream  function  and  vorticity 
contribute  to  the  Jacobian  evaluated at   the origin  (solid 
circle). The  arrows  represent  interaction  coefficients  con- 
necting  stream  function at  the  tail  and  vorticity  at  the  head, 
labeled  according  to (A5). The solid  arrows  all  start  in  the 
upper  right  quadrant while the  dashed  ones  are  all  parallel 
and  congruent  to  them. 

tairtd a O l ~ l l ~ m n + l ~ m ~ l n + l ~ , n ,  obtained  from  multiplication of 
J,, by I),~, is represented by  the  upper  triangle  in figure 7, 
while t,he triad aO"l"lO~mn-l [m- ln~mn similarly  forms the 
lower  t,riangle. No other  triangles  may  be  formed  within 
tlhe 2A square which are  congruent, parallel, and whose 
corners  represent  the  same  variables (# or 1). Thus  the 
sum of these  paired  interaction coefficients must  vanish, 
i.e., aol-ll-ao"l"lo=O, in order that kinetic  energy  be 
conserved  within the  square.  Other  triangles  may  be 
formed  using the  other  interaction arrows  represented by 
figure 6. Most of these  have no pairings, and  the  inter- 
action coefficients must therefore  vanish. The result', 
for  t,he  energy  conservation  requirement, is that: 

al=az, a4=a5=a6=0 (A101 

while similar  pairings  for the  product of Jmn and I,, 
yield the  relations 

a1=a3, a4=a5=a6=0. (A111 

Upon  application of the second-order  accuracy  require- 
ment, (A8), one  degree of freedom is removed  from  each 
of the  above  and we obtain  the  formulas 



Douglas K. Lilly 25 January 1965 

I 
i I y  

r 
1 

X- 

A 

FIGURE 7.-Energy conservation  interaction  diagram.  The 
hatched  triangles  represent  the  interaction  products of two 
stream  functions  and one vorticity  value at their  vertices. 

for kinetic  energy  conservation,  and 

for squared  vorticity  conservation.  Eac,h of these  has 
one arbitrary coefficient; thus  it is possible to  satisfy  both 
with  the  unique  system 

al=az=a3=1/12, a4=a5=a6=0. (-414) 

The difference schemes described in the  text  are  obtained 
from special choices of the  arbitrary coefficients. J1 is 
the  vorticity conserving  scheme  corresponding  to a, = 1/4, 
while Jz is obtained  from az=1/4, and J3 from a3=1/4, all 
other coefficients ~ranishing.  The combined system JA is 
obtained  from (A14). As stated  in  the  text,  any  linear 
combination of Cr, with J1, J,, or J3 preserves the  latter’s 
properties. For example 3 JA/2 - J3/2 = (J1 + Jz)/2, cor- 
responding  to al=az=1/8, which satisfies (A12) just  as 
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